AVNET

4

Ak B
i\ - |
A = 2 A

£¥ADIUVO

AMD Versal™ Adaptive SoC Al
Engine for DSP Architecture

Version: 1.0

Author: Adam Taylor

Adiuvo Engineering




ADI

1. Contents

1. CONTENTS Loiiiiiiii i e 1
2. (00T o F=d T 1o - USRIt 2
3. T A oo [V o! 4] o F PSP PO PPPR 3
4. Core Maths Of Al and DSP ......ooeiioiieee ettt st ettt e b e st e sbe e s bt e e saeee e 3
5. Fixes and FlOating POINT TYPES ..eeecvuiieiiiiieeiiiteeecitee et e sttt e s vee e e eatre e s e sabe e e e snbae e e sataeeennsaeeesnnseas 4
6. AMD Versal™ Adaptive SoC Architecture INtroduction ..........cccueeeeeiieiiciiee e 5
7. AMD Versal™ Adaptive SOC ProdUCES ....ceiiiicciiiiiie ettt e e e vere e e e e e e e snnbee e e e e e e enreaeeeas 6
8. AMD Versal™ Adaptive SOC Architecture GENErations........ccecveeevcieeeiicieeeccieee e e e sveee s 7
9. Deep Dive on the AMD Versal™ Adaptive SOC Al ENGINE.......coovcveeeeiiieeeciieee et e e 7
O A I o o ¥ o [ o TR L= =T =1 f [0 [T 9
11.  Programming Concepts fOr the AlE ...... ..ot e e e e e srr e e e e e e e anees 10
12.  Developing Al ENgine APPliCations .......ccoccuiiiiiiiiii ittt e e s saaee s 12
13.  Why use the Al Engine for DSP-based AppliCatioNS.......ccceevecveiieiiiie i 13
14. Example Al Engine for DSP APPlICAtioNS .......ccccuiiiieiiiie ettt e e e 15

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 1 of 17



ADIUVO

ENGINEERIN AND TRAINING, LTD.

o

2. Change Log

Version Notes

1.0 Initial issue

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 2 of 17



“} ADI!
3. Introduction

Digital Signal Processing is critical to modern applications, from RF communications (where it is used
for beamforming), to robotics, test equipment, and medical imaging.

As solutions addressing these markets are faced with competing demands, performance demands
are increased (e.g. higher throughput). These performance demands add to the increasing pressure
for a better power performance. Simply put, solution architects want to achieve more processing
using less power to achieve that performance.

This technical note is going to explore how AMD Versal™ adaptive SoCs and its Al Engines are able to
help solution developers achieve these demands.

We will examine the following aspects of using the Versal Al Engine for DSP platform:

1. How are mathematical operations for Al and DSP based upon the same foundational
operation.

Introduce the Versal devices and the differences between generations.

Detailed look at the Al Engine structure.

Examine use cases for Al Engine in DSP applications.

Examine programming models to use the Al Engine for DSP in our applications.
Solution Example.

ok wnN

4. Core Maths of Al and DSP

While Al and DSP may initially seem like very different applications, the underlaying mathematics for
many techniques are similar in that they are based upon mathematical operations on large arrays.

These operations include dot products, Finite Impulse Response, Fast Fourier Transforms and Matric
Multiplication, and at the heart of these operations is the Multiply Accumulate (MAC). To get the
best performance from this MAC, it is often best to have the data in closely coupled memory.

The simplest element of a MAC is the dot product. That is a MAC loop over two vectors of equal
length.

N

(I-‘b‘_Eﬂ.ibf

i=1

For a simple example: a =[1,2,3], b = [4,5,6] the dot productisa.b=1.4+2.5+ 3.6 = 32.

The MAC is critical for DSP and Al, as for neural networks, many operations compute weighted sum,
plus a bias e.g. dot(a,b)+bias.

For one-dimensional convolution, which is represented by the equation y[n] = Z x[n-k]-h[k], the
output is a dot product between a sliding window of the input X and the vector H (which is a
predefined constant). Typical use cases of one-dimensional convolution is FIR filtering.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 3 of 17



3ADI

Two-dimensional convolution is typically used for image filtering and convolutional neural networks.
Each output pixel is the result of a dot product of several local pixels and kernel weights. In effect,
this results in many sliding dot products over the image.

To implement Fast Fourier Transforms (FFT), the DFT matrix is broken into a number of sparse stages
called butterflies. This turns a large dot product calculation into a sequence of much smaller
butterflies, which are implemented as smaller dot products, plus twiddle multiplies. This makes the
FFT a sequence of dot products, multiplications, and additions.

While the dot product is key to many Al and DSP operations, working with real world signals requires
many hundreds of millions of operations. As such, we need to be able to efficiently perform as many
calculations as possible on a clock cycle.

This is where Single Instruction Multiple Data comes into its own. Single Instruction Multiple Data
operates exactly as its name indicates- one instruction operates on many values in parallel instead of
one value at a time. These parallel data values are often called vectors or lanes.

SIMD therefore enables an increase in throughput. We can get up to N x improvement for N lanes.
As we have fewer fetch decode execute cycles, the performance per Watt is increased and as we are
doing defined operations (loops and vector operations), the timing becomes more predictable.

This combination of the MAC and SIMD is critical for many advanced DSP and Al solutions, enabling
them to achieve not only high performance, but also efficient power utilization.

5. Fixes and Floating Point Types

When implementing Al or DSP solutions, the types used for the mathematical operation such as the
dot product defined above can have a large impact on performance and accuracy. At the highest
level, we can group types into either fixed or floating point types.

Fixed point represents numbers as integers with an implied binary point. As such, you trade a
dynamic range for tight control of precision, latency, and resources. Fixed point implementations
map brilliantly onto FPGA fabrics and DSP slices, giving high throughput, low power, and
deterministic behavior when your signal ranges are well understood.

In floating point, each number contains a mantissa and exponent, while fixed point vectors can be
arbitrary sizes. Floating points are normally 32 bits. The ability to float the decimal point provides a
wide dynamic range and easier algorithm development with fewer worries about scaling and
overflow. However, the downside of floating point is a more complex implementation that can
impact the performance.

Commonly used fixed and floating point types in Al and DSP applications include:

e Int4 — 4-bit integer for ultra-compact fixed-point quantization.

e Int8 — 8-bit integer commonly used fixed point quantization.

e Intle — 16-bit integer often used in many DSP applications.

e CIntle — Complex fixed point: 16-bit real + 16-bit imaginary per sample.

e CInt32 — Complex fixed point: 32-bit real + 32-bit imaginary per sample.

e FP32 — 32-bit floating point often called single precisions.

o Bfloatl6 (BF16) — 16-bit float with FP32-like exponent and shorter mantissa.
Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN

Company Number: 9350139
Page 4 of 17



3ADI

e FP16 — 16-bit float often called half precision smaller range/precision than FP32.
o FP8 — 8-bit float extreme compression, represents the exponent and mantissa in either 4,3
or 5,2 format plus sign.

Exactly which type to use depends on the needs of the application for accuracy, performance, and
power efficiency.

6. AMD Versal™ Adaptive SoC Architecture Introduction

Fabricated on TMSC 7nm silicon, the AMD Versal™ adaptive SoC architecture fuses application-class
processors, network on-chip (NoC), programmable logic, and domain-specific accelerators into a
single platform. At the heart is the Control, Interfaces & Processing System (CIPS), which brings
together Arm® applications and real-time processors, cache-coherent interconnect, platform
management/boot, and AXI connectivity into the NoC and PL. This fusion enables a coherent, well-
managed control plane for the entire device, while providing a tightly integrated high performance
processing solution.

Connectivity within the device is provided by a high-bandwidth Network-on-Chip (NoC) which spans
the device, making DDR memory and peripherals system-wide resources. To support different
applications, determinism, and latencies, the NoC supports several QoS classes, low-latency,
isochronous, and best-effort.

The Programmable Logic (PL) delivers next-generation CLBs, abundant BRAM/URAM, and DSP58
slices which support SIMD, complex math, and FP32 for custom data paths and tight 1/O coupling.
This makes the Versal adaptive SoC architecture ideal for packet handling, protocol adaptation, and
DSP pipelines.

Many devices within the AMD Versal adaptive SoC range include Al Engines (AIE/AIE-ML). These Al
engines are VLIW/SIMD vector processors with local memories and high-throughput streaming, well
suited to signal processing, imaging, communications, and ML inference. They natively support
common fixed-point and floating-point formats and integrate via the NoC and AXI, letting you
partition algorithms between software-defined Al Engine graphs and PL kernels to hit performance,
latency, and power targets.

Complementing Al Engines, the PL’s DSP Engines provide deterministic MAC-dense building blocks
for oversampling filters, channelization, modulation, and control-loop math—great for offloading

pre/post-processing around Al Engine kernels or standing alone where hardware pipelines win on

latency.

Integrated hardware peripherals round out the platform. This includes hardened DDR memory
controllers accessed through the NoC, multi-rate Ethernet, PCle/CPM DMA, high-speed GTs
(32/58/112 Gb/s), XPHY for DDR/MIPI and source-synchronous interfaces, plus video decode, crypto,
USB, SD/eMMC, and more—so most board-level data movement is solved with built-ins rather than
soft IP.

Together, CIPS for control, NoC for predictable data movement, PL and DSP Engines for custom
hardware, the Al Engine for software-defined vector compute, and rich integrated peripherals form
a cohesive and composable platform. The remainder of this note will show how to map real DSP

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 5 of 17



3ADI

workloads onto the Al Engine and PL using AMD Vivado™ tools and Vitis™ software platform flow to
achieve higher throughput and lower power than PL-only implementations.

7. AMD Versal™ Adaptive SoC Products

AMD Versal devices are available in a range of different series, while built on a common backbone: a
hardened processing system connected with a Network-on-Chip, surrounded by programmable logic
and rich 1/0.

What changes from series-to-series is the application emphasis: some devices are optimized for
compute and AL acceleration, some for embedded inference at low power, some for sheer I/O
bandwidth, and others for compute with massive on-package memory. These different product
series are Versal Al Core, Versal Al Edge, Versal Prime, Versal Premium, and Versal High-Bandwidth
Memory adaptive SoCs.

Versal Al Edge devices are the natural choice when the problem lives beside sensors and cameras,
and you care about milliwatts and nanoseconds. They integrate Al Engine-ML blocks and on-chip
XRAM to enable inference and pre/post-processing to the edge. In practice, that means robotics,
smart cameras, and industrial analytics pipelines where you want to keep data local, minimize DDR
traffic, and still have enough PL fabric to massage pixels, fuse sensors, or run control loops without
breaking the power budget.

Versal Al Core devices are optimized for compute and Al Acceleration. Here, the Al Engine array also
includes support for commonly used DSP Types ideal for filters, FFTs, beamforming.

Versal Prime devices sit in the middle as the “do-everything” platform. This is intended for solutions
where the developers need a broad mix of logic, memory, and I/O without Al acceleration. It is an
ideal target for embedded control with pockets of acceleration, protocol bridging, and gateway-style
designs that touch lots of interfaces.

Versal Premium devices are about moving data very fast, providing a very high lane counts, and the
highest performance SerDes, coupled with hardened networking/crypto feature set. These devices
are intended for packet processing, switching, and secure transport at scale.

Versal HBM devices solve the memory starvation problem that many adaptive compute solutions
face. By bringing High-Bandwidth Memory onto the package and coupling it into the NoC and PL,
they keep wide dataflows fed without the latency and contention of external DRAM. Workloads like
large FFTs, table look-ups, packet buffers, and analytics that keep revisiting big datasets all benefit
because the memory system stops being the bottleneck.

Alongside the different Versal adaptive SoC architecture series, some also have different generations
that introduce new capabilities and performance.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 6 of 17



ADI|

8. AMD Versal™ Adaptive SoC Architecture Generations

The range of AMD Versal adaptive SoCs provide a number of different devices available across two
generations. To identify the most appropriate device and generation for the challenge at hand, we
must first understand the different generations and devices.

Generation 1.

The first generation of Versal devices brings together a heterogeneous compute fabric described
above with the common core being the CIPS, PL, and NoC. Depending on the family, devices add Al
Engines: either the original Al Engine or the first-generation AIE-ML Gen-1 spans multiple families,
Versal Al Core, Versal Al Edge (Gen 1), Versal Premium, Versal Prime, and Versal HBM adaptive SoCs
giving designers a consistent architecture with different mixes of acceleration and I/0.

Generation 2.

The second generation updates the processing system, moving to Arm® Cortex®-A78AE for
applications and Arm Cortex-R52 for real-time control. Another major difference is the introduction
of second-generation ML-centric Al Engines (AIE-ML v2). These engines provide higher inference
efficiency and throughput at the edge.

9. Deep Dive on the AMD Versal™ Adaptive SoC Al Engine

At the heart of several Versal devices sits a two-dimensional array of Al Engine tiles. Each tile
combines a VLIW/SIMD processor, tightly-coupled local memories, and on-tile interconnect for
streaming, configuration, and debug. The array connects to the rest of the device via a dedicated Al
Engine array interface into the NoC (memory-mapped) and directly into the PL (streaming).

Each Al Engine tile comprises three blocks: the Al Engine itself (scalar + vector data paths under a
VLIW scheduler), the Al Engine memory module, and the tile interconnect. This forms the basic
compute, memory, switch which is replicated across the two-dimensional array, to implement the
desired functionality.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 7 of 17



AXI4 Interconnect

Back-pressure handling
Up to 200+ GB/s bandwidth per tile

Cascade Stream .
Tile Memory Access ——»
AXl|4 Interconnects —» I

A

<—» |[nterconnect |«

A

Local Memory |

3

A

\j

Memory

Al Engine
(including ISA-based
Vector Processor)

Module

Multi-bank implementation

Sharedamong «+————— >

neighboring Al Engines

Cascade Interface
Partial results to next Al Engine

On-array connectivity

\/

[T}

Application Specific
Vector Extensions

For Example: ML and
5G Wireless

ISA-based

Vector Processor

Software

Programmable

(e.g., C/C++)
- >

DMA

Non-neighbor data communication
Integrated synchronization primitives

X21602-091321

Al Engine tiles are able to link north/south/east/west through a lightweight stream switch for
dataflow between neighbours; in parallel, a memory-mapped AXI network spans the array so
external AXI masters via the NoC can reach tile memories and control/status registers. This dual-
fabric streaming for dataflow, AXI for control/config is what makes application implementation

practical.

Getting data in/out

To achieve the highest throughput possible by using the Al Engine tiles, we need to able to get data
into and out of the Al Engine tile array efficiently. To achieve this, interface tiles are used at the
boundary, which are capable of connecting to with the NoC, Programmable Logic, or Configuration

Interface.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139

Page 8 of 17



Al Engine Tile

( Streaming Interconnect ]

) Al Engine /A_I Engine Array, 6 x 4 Al Engine Tiles and corresponding \
Al Engine g - -
Memory Al Engine-PL/NoC Interface Tiles

atengine || AlEngine || Alengine || AlEngine || AlEngine || AlEngine
Tile Tile Tile Tile Tile Tile

Al Engine Al Engine Al Engine Al Engine Al Engine Al Engine Al Engine
PL Module Tile Tile Tile Tile Tile Tile

atengine || AlEngine || Alengine || AlEngine || AlEngine || AlEngine

- Tile Tile Tile Tile Tile Tile
NOC Interface Tile
Al Engine Al Engine Al Engine Al Engine Al Engine Al Engine Al Engine Al Engine
NoC Tile Tile Tile Tile Tile Tile
PL Module
Module
Configuration NoC NoC
Inter_face Interface Interface
Al Engine Configuation Tile Tile Tile
Interface Tile \- _/
X20818-040519

It is through the NoC interface tiles that we are able to access system memories such as DDR
memory or Acceleration RAM (XRAM) within the CIPS.

Each Al Engine tile pairs its VLIW/SIMD core with banked local data memory for parallel access, a
tile-level DMA to move data efficiently, and a 16-lock hardware semaphore unit for safe producer-
consumer interfacing between tiles. This combination gives a deterministic data flow which can
leverage back pressure to control producer-consumer flow.

All memories and registers in Al Engines and memory modules are AXI4 memory-mapped, so
software on PS can boot, configure, and inspect the array. That same path enables profiling and
trace control exposed by the tools.

10. Al Engine Generations

The Versal Al Engine is a tiled VLIW+SIMD processor array with local memories and stream/DMA
fabric between tiles. It is designed for deterministic deeply-pipelined signal processing and inference
graphs: you place kernels tile-by-tile, move data explicitly, and get predictable throughput.

Al Engines provide wide SIMD on classic fixed-point and full single-precision floating point. Vector
lanes natively cover 8/16/32-bit integers (including complex forms) and real/complex FP32, and as
such, Al Engines excel at numerically sensitive DSP (FIR, FFT, beamforming) as well as fixed-point ML
primitives.

AIE-ML (first-generation ML engines) shifts the center of gravity toward inference. It adds ML-
oriented data types most notably bfloat16 (BF16) and low-precision integer vectors down to INT4 to
leverage more efficient quantized CNN/transformer blocks while still composing DSP-style graphs.
Critically, AIE-ML removes the native FP32 vector pipeline present in Al Engines, and in its place,
float support is provided via BF16-based emulation / accumulation in the API.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 9 of 17



3ADI

AIE-ML v2 (second-generation ML engines) builds on that with higher per-tile compute and better
performance per Watt for inference. It expands native types beyond AIE-ML: FP16 and FP8 are
supported in the vector unit, along with microscaling (MX) formats MX9, MX6, MX4 where lanes
share an exponent for block-floating efficiency. There’s dedicated block-floating matrix-multiply in
the APl that accumulates in FP32 (accfloat), making modern attention and Matrix Multiply (GEMM)-
heavy models more efficient at the edge.

11.Programming Concepts for the AIE

To program an Al Engine, we need to be able to define not only the sequence which is executed by a
particular Al Engine tile (the kernel), but also how the Al Engine tiles flow data between each other.

First we should understand when to use the AIE and when to use the PL. AIE suits vectorizable,
compute-dense streaming DSP such as multi-rate FIRs, FFT/IFTT channelizers, beamforming/MIMO,
linear algebra, and AIE-ML inference; these workloads map cleanly to SIMD and benefit from local
tile memory.

The PL suits ultra-low-latency, bit-level or control-heavy logic and very high I/0 rates such as packet
parsing, protocol framing/de-framing, encoders/decoders, scramblers, custom interfaces, and wide
fixed-point pipelines close to SERDES.

Before we discuss how the AIE Kernel is programmed, we will examine how the AIE Tiles are
connected to stream data between each other to implement the desired overall functionality.

Connecting together Al Engine Tile kernels is called creating a graph, and is based on a distributed
model of computing proposed in 1974 by Gilles Kahn, called a Khan Process Network (KPN). In the
Khan Process Network, tasks within it are executed in parallel whenever possible. Like many
concepts, the KPN is implementation independent, which also makes it ideal for implementation
within a heterogeneous system.

Within a KPN, the components represent the kernel while the connections between the components
represent the data flow. These are often called edges in KPN terminology. Mapping this back to the
Al Engine, the components represent an Al Engine tile executing a kernel. Connections between the
components is achieved by the Al Engine tile interfaces, typically the lightweight streaming protocol
which connects the Al Engine tiles.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 10 of 17



ADIUVO

GINEERING AND TRAINING, LTD.

-+—» Memory Access
-+—» AX| Stream

%%
Al Engine Array -+  AXIMM

AEEEEEEEEEEEEEEEEEEE «+—» (Cascade Stream
EEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEE
EEEEEEEEN ' EEEEEEEEEE

e AXiSWest | I AXIS East

Program Instruction Lo‘ggds;gstsare
Memory Fetch & Decode

: Generation
(16KB) Unit s

s2MM MEM  MM2S
DMA I/F DMA

AXIS North

32b Scalar RISC
Unit

Stall Control, Debug, Accumulator
Handler & Trace Stream FIFO

AXIS South

MEM I/F

When working with Versal devices, KPN networks are referred to as data flow graphs. These graphs
are captured using a C++ Adaptive Data Flow (ADF) graph program. Within this graph, the execution
schedule is determined by the graph and the available of input data and of course output resources.

This means the Al Engine tiles within the design are in one of two states, executing or awaiting input
data. Common concepts used in ADF graph programs are:

e Node — This is the Al Engine Kernel.

o Token — This is the input data to the Al Engine.

e Edge —Edges are implemented as Al Engine interfaces (e.g. 10 Stream or DMA).

e  Firing — Execution of the Al Engine Kernel this is managed by the Al Engine compiler based
on input data availability.

e Blocking — Kernels are stalled if waiting for the buffers to be filled or the source kernel is not
providing data.

The Al Engine Kernel is declared as C/C++ functions leveraging the Al Engine API. The resultant
application is compiled by the Al Engine compiler to create ELF files for all of the kernels, along with
partitioning, placement and routing defined by the ADF.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 11 of 17



3ADI

This is provided to the development environment as a compiled library libadf.a along with the
necessary metadata. This compiled graph can then be integrated within the larger system design
using AMD Vitis™ software platform.

12.Developing Al Engine Applications

There are two practical routes to program the Versal Al Engine, and they are deliberately
complementary.

In the Vitis software platform, the Al Engine C++ ADF Graph serves as the description of the pipeline.
Kernels are written in standard C/C++, and the graph defines how samples move either as framed
windows for deterministic staging or as continuous streams while making interfaces explicit.

PLIO connects the graph to the AXl4-Stream in the programmable logic. GMIO moves data to and
from external memory through the NoC, and cascade links enable multi-tile accumulations for
constructs such as long FIRs and beamformers. When you build, the Al Engine compiler elaborates
the graph, places and routes kernels, configures tile DMAs and locks, and emits the graph container
(libadf.a with metadata).

The Vitis software platform system linker (v++ --link) then packages that container, any PL kernels,
and the platform into a single device image (PDI).

Verification is done in two passes: software emulation for very fast functional checks using file 1/0,
followed by aiesim for tile-accurate timing and back-pressure behavior. The Vitis software platform
analyzer closes the loop by exposing stalls and utilisation, so buffer sizes, window lengths, and NoC
choices can be optimized for the application. At run time, the processing system controls the graph
through XRT/ADF including start/stop, runtime parameter updates, event profiling, which enables us
to fine tune behavior without a rebuild.

The alternative approach is to use Vitis Model Composer integrates the same technology into
MathWorks MATLAB® and Simulink® for teams who begin with algorithms and golden vectors.

The signal chain is drawn with Al Engine blocks and co-simulated against existing MATLAB
testbenches, which keeps verification assets intact while you settle questions of frame size, fixed-
versus floating-point, and quantization.

With a single export, Vitis Model Composer generates the identical ADF graph and kernel sources
and hands them to the Vitis software platform.

Following the export from Vitis Model Composer, the flow is unchanged. The aiecompiler builds the
graph, v++ links the system, the same simulators validate timing, and the same runtime APIs control
deployment.

Both routes can take a design from concept-to-device. The choice often depends upon the

developing teams experience. The Vitis software platform suits software-oriented teams

comfortable with C/C++, version control, and CI/CD, offering explicit control and clean system

integration. Model Composer suits algorithm-focused teams working in MATLAB/Simulink,

accelerating iteration with block-diagram modelling and code generation. As each path leverages the
Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN

Company Number: 9350139
Page 12 of 17



3ADI

same linking and analysis flow, both approaches enable high performance solutions leveraging the Al
Engine.

13.Why use the Al Engine for DSP-based Applications

Traditionally we have implemented DSP processing within programmable logic, leveraging the
capabilities provided by DSP, Block RAM and CLB elements. While this enables low-latency and
deterministic implementations it may not provide the most optimal solution for performance and
performance / MHz / W.

The Versal Al Engine provides developers with a VILW SMID specialized vector processor, which has
been optimized to implement the mathematics commonly used within Al and DSP algorithms.
Coupled with the closely coupled memory and streaming / DMA interconnects, this enables the
construction of DSP chains implementing filters, FFTs, and beamformers to be composed tile-by-tile
with bounded latency and fewer external “glue” resources than would be implemented when a
discrete PL solution was implemented.

In contrast, DSP58 slices are powerful arithmetic blocks that provide the ability for SIMD, complex
math, FP32 within the PL fabric, but they rely on separately provisioned PL memories (BRAM/URAM)
and control to form long pipelines. This can add routing and buffering overheads at scale. This
programmable logic implementation performance is dependent on the implementation style
selected by the developer.

Leveraging the Al Engine therefore has several advantages over the use of PL and discrete logic
implementation using IP blocks. When working with a PL implementation, the engineering must start
from scratch and determine the data types, quantization, implement and verify the design using an
HDL simulator.

Based around KPN, the Al Engine tile array enables a simple graph to be created for the desired DSP

algorithm to be implemented. The closely coupled memory provides for fast storage of the operands
while the streaming interface allows multiple Al Engine kernels to be connected to together without
the need to achieve timing closure.

When it comes to developing DSP applications, Al Engine tiles also align with the data types
commonly used in DSP applications (e.g. Int8/Int16, Cint16/CInt32, and FP32). The AIE-ML extends
this with Int4 and BFloat16 for bandwidth and energy efficient processing.

The on-device NoC provides quality-of-service classes, Low-Latency and Isochronous among them to
move streams predictably between PS, PL, DDRMC, and the Al Engine array. The NoC therefore acts
as enabler for high-rate, multi-stage DSP graphs. Finally, XRAM (Acceleration RAM) offers a low-
latency staging buffer for AIE/AIE-ML and the RPU, giving designs a convenient scratch space for
ping-pong buffers and burst absorption.

The Al Engine and its DSP capabilities therefore provide the developer with a wider range of tools
with which to address the challenges presented for performance and power efficiency.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 13 of 17



Aspect

Compute model

Local memory &
DMA

System fabric

Staging buffers

Native data types

Pipeline scalability

Throughput/latency
QoS

Tool flow

Time-to-performance
& power

Best-fit use cases

3ADI

Al Engine Tile (AIE / AIE-ML)

VLIW core with SIMD units per tile;
designed for pipelined DSP/AIl kernels.

Shared local SRAM on each tile with
integrated interconnect/DMA for
windows/streams—minimizes
external buffering.

NoC with QoS (Low-Latency,
Isochronous, Best-Effort) for
predictable movement between
PS/PL/DDR/AIE.

XRAM (4 MB) provides low-latency
staging for AIE/AIE-ML and RPU.

Int8/Int16, Cint16/CInt32, FP32; AIE-
ML adds Int4, BFloat16 for low-
precision, high-throughput
inference/DSP blending.

Tile-by-tile composition with
deterministic behavior and fewer
external inter-stage resources.

Fabric QoS classes enable bounded
latency paths (Low-
Latency/lIsochronous) for streams.

Vitis software platform ADF (and
optionally Model Composer) for
software-driven graph design,
profiling, and deployment.

Typically shorter bring-up; dynamic
power often reduced when bulk DSP
moves into the Al Engine (software-
developed kernels).

Multi-stage filtering, FFTs/OFDM,

beamforming, modem chains, and
mixed DSP/AIl pipelines with tight

latency budgets.

DSP58 in PL

Fixed-function arithmetic slice with
SIMD/complex/FP32 modes.

No embedded scratchpad or DMA;
long chains typically add
BRAM/URAM/FIFOs and control in PL.

Reaches memory/IO via PL
interconnect; QoS guarantees come
from design discipline rather than
fabric classes.

Uses PL memories (BRAM/URAM) as
designed by the user.

Supports fixed/floating operations
inside the slice, including FP32 and
complex modes.

Scales by replicating slices and adding
fabric for buffering/scheduling;
routing pressure grows with stage
count.

Depends on user-implemented
interconnect and arbitration policies.

Vivado tool-centric RTL/block design;
DSP58 used as IP/macro with user-
built control/data path.

Powerful for custom data paths and
unique bit-level tricks; power/effort
scale with the amount of surrounding
fabric.

Fine-grained arithmetic inside
bespoke PL architectures; glue logic
around the Al Engine; interface
adapters; specialized kernels.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139

Page 14 of 17



3ADI

14.Example Al Engine for DSP Applications

Across beam forming, EW, satcom, robotics, test gear, and medical imaging, Versal Al Engines (AIE)
turn heavy streaming DSP kernels into tile-by-tile, deterministic pipelines.

Automotive

Automotive LiDAR pushes multi-gigabit sensor streams that reward a clean split: keep the sensor
PHY (MIPI/SLVS-EC), timestamping, and safety monitors in the PL, and let AIE handle the heavy
math. Tiles run windowing and de-chirp, batched 1D/2D FFTs for range, Doppler, multi-return
accumulation, and phase-based beamforming across the receiver array. Downstream stages,
CFAR/peak picking, motion compensation, and fast clustering/voxel filtering, streaming tile-to-tile to
produces a clean, latency-bounded point cloud. The result is a deterministic frame timing and higher
throughput per watt than a PL-only build, with the PS free to fuse LiDAR, radar, and camera for
tracking and SLAM

Beam Forming

Phased-array beam forming is a natural fit for Al Engines because the core operations fractional-
delay FIRs, complex phase rotation, and weighted summation across elements map directly to vector
MACs with data kept close in on-tile memory. Al Engine tiles hold per-beam weight vectors and slide
sample windows via tile DMA, passing partial sums through cascade/stream ports so the array
behaves like a deterministic, deeply pipelined summation tree. For direction-of-arrival heads such as
MUSIC or ESPRIT, covariance accumulation (outer products) and narrowband FFTs are staged tile-by-
tile, while PL logic handles high-rate ADC interfacing, decimation, and calibration injection without
disturbing the compute graph.

Electronic Warfare

EW receivers benefit from wideband channelization and fast retuning under load. Al Engines deliver
both by distributing polyphase filter banks and large FFTs across tiles, using hardware locks to
coordinate producers and consumers without software spin loops. Pulse compression and detection
chains FFT-domain convolution, cross-correlation, and CFAR-style statistics stream deterministically
from one stage to the next, letting threat libraries or matched-filter coefficients be swapped at
runtime via scalar control. Instantaneous frequency and phase estimation (short-window STFTs,
vectorized arctan/unwrap) exploit SIMD lanes for high sample-rate I/Q math, while PL implements
gating/blanking and exotic RF digitizer links.

Military / Satellite Communications

Baseband workloads such as pulse shaping (RRC), resampling, carrier/timing loops, MIMO
equalization, and OFDM/IFFT pipelines can be arranged as a tiled Al Engine graph to guarantee
frame-to-frame throughput and latency. In beam-hopped or phased-array systems, per-beam
precoding and combining become matrix—vector streams, each tile holds a sub-matrix and applies
updates deterministically each frame, enabling rapid beam schedule changes without rebuilding the
PL. Symbol demapping and soft-information generation are vector reductions that sit well on the Al
Engine, with the NoC moving traffic to DDR/XRAM or handing off to PL-based FEC engines and
framers at line rate.

Robotics

Real-time autonomy blends perception with control, so deterministic latency matters as much as

raw TOPS. AIE tiles run multi-rate filtering (FIR/IIR), quaternion and rotation math, and EKF/Gaussian

update steps as short, predictable kernels that meet control deadlines without thrashing external

memory. Vision and ranging pre-processing, pyramid filters, block-matching, local FFTs for feature
Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN

Company Number: 9350139
Page 15 of 17



3ADI

extraction are streamed through the array to minimize DRAM bandwidth, while the PL handles
image/LiDAR/IMU PHYs and timestamping. Audio/ultrasonic pipelines (beamforming, envelope
detection, matched filtering) likewise chain tile-to-tile, giving consistent end-to-end latency for
sensing and actuation loops.

Test Equipment (e.g., 5G Test Radios)

Test sets need flexible waveforms, clean spectra, and accurate measurements, often at high
bandwidths. Al Engine graphs can build and analyze multi-carrier OFDM (resource-grid mapping -
iFFT = clipping/CFR = DUC) and execute spectrum/cyclostationary analysis and EVM pipelines with
deterministic frame timing. Digital predistortion and channel emulation, tap-heavy FIRs, memory
polynomials, and fast-convolution blocks, partition naturally across tiles, letting you sweep models
or impairments through scalar control without touching the PL. Framing and high-speed interfaces
(JESD/CPRI/eCPRI) stay in PL, while the Al Engine delivers the baseband math at throughput-per-
watt levels that keep thermals and power in check.

Medical Imaging (CT/MRI Reconstruction)

Reconstruction algorithms are dominated by streaming linear algebra and FFTs, which the Al Engine
array handles as locality-friendly stages. CT pipelines perform 1D/2D/3D FFTs, filtering, and filtered
back-projection as streaming reductions, distributing angles/slices across tiles to meet real-time
targets. MRI pipelines benefit from gridding/NUFFT and complex multiply-accumulate steps
arranged tile-by-tile; parallel MRI methods (SENSE/GRAPPA) use coil-wise complex ops and small
dense linear algebra blocks that are SIMD-friendly. By keeping working sets in on-tile SRAM and
moving data via tile DMA and stream ports, the Al Engine reduces DDR churn and delivers stable,
repeatable latency, key for clinical throughput and image quality.

Conclusion

The AMD Versal™ Al Engine (AIE) family delivers excellent DSP performance with software-level
flexibility, achieving higher throughput, lower power, and reduced PL resource use compared to
traditional logic-based designs. With the unified Vivado Vitis flow, engineers can rapidly prototype,
optimize, and deploy advanced DSP algorithms across Versal devices, accelerating innovation while
cutting development time.

AMD, and the AMD Arrow logo, Versal, Vitis, Vivado, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

Registered Office: 1 Bunting Street, Newhall, Harlow, Essex, CM17 9GN
Company Number: 9350139
Page 16 of 17



	1. Contents
	2. Change Log
	3. Introduction
	4. Core Maths of AI and DSP
	5. Fixes and Floating Point Types
	6. AMD Versal™ Adaptive SoC Architecture Introduction
	7. AMD Versal™ Adaptive SoC Products
	8. AMD Versal™ Adaptive SoC Architecture Generations
	9. Deep Dive on the AMD Versal™ Adaptive SoC AI Engine
	10.  AI Engine Generations
	11. Programming Concepts for the AIE
	12. Developing AI Engine Applications
	13. Why use the AI Engine for DSP-based Applications
	14. Example AI Engine for DSP Applications


